Ramsey numbers for degree monotone paths
نویسندگان
چکیده
A path v1, v2, . . . , vm in a graph G is degree-monotone if deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vm) where deg(vi) is the degree of vi in G. Longest degree-monotone paths have been studied in several recent papers. Here we consider the Ramsey type problem for degree monotone paths. Denote by Mk(m) the minimum number M such that for all n ≥ M , in any k-edge coloring of Kn there is some 1 ≤ j ≤ k such that the graph formed by the edges colored j has a degree-monotone path of order m. We prove several nontrivial upper and lower bounds for Mk(m).
منابع مشابه
Ordered Ramsey numbers of loose paths and matchings
For a k-uniform hypergraph G with vertex set {1, . . . , n}, the ordered Ramsey number ORt(G) is the least integer N such that every t-coloring of the edges of the complete k-uniform graph on vertex set {1, . . . , N} contains a monochromatic copy of G whose vertices follow the prescribed order. Due to this added order restriction, the ordered Ramsey numbers can be much larger than the usual gr...
متن کاملRamsey numbers of ordered graphs
An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number ...
متن کاملOn the Size-Ramsey Number of Hypergraphs
The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...
متن کاملOrdered and partially-ordered variants of Ramsey's theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii PRELIMINARIES AND NOTATION . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Graph Ramsey Number . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Arrow Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 The Dir...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 340 شماره
صفحات -
تاریخ انتشار 2017